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Proof: Let y be a s uare root of -x modulo P and 
P- -x)~ = u + vJ?C with one of u, v 

acterized by some unknown parameter vector 8 E 0; i.e., the 
r + y, -y. Suppose (r + 
equal to 0. Then ((r + \T-x)/( r - G) )Q is 1 or - 1, and so 

probability function p( .) belongs to the set Pe, where 

is ((P + y)/(r - Y))~. Hence (r + y)/(r - y) is a 2Qth root of pi= {P(‘)IPC) =P(.;8),flE@}. 
unity in Z g not equal to 1 or - 1. It follows, using Lemma 1, 
that the algorithm fails for at most 2Q values of r. Thus the 

The ML criterion will choose j from Pe (which is equivalent to 

probability of failure at each iteration is 2Q/(P - 1) = l/2”-‘. 
choosing 8 in @)  by 
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The basic limitation of the ML method is the need for model- 
ing assumptions; i.e., we have to assume that we know the 
probability function up to a fixed number (usually much smaller 
than the length of the observations) of unknown parameters. 
Without those restrictions the ML method will break down; for 
example, if we allow any probability function, maximizing the 
likelihood will lead to the trivial (but unacceptable) result p(a) 
= 6((u - x), where S(v) is the Dirac delta function. As another 
example, if the number of the parameters is not fixed, then the 
ML will not work; the more parameters we choose, the larger the 
likelihood can be. This example has led (as will be seen later) to 
the introduction of the Minimum Description Length (MDL) 
criterion. . 

Maximum Entropy: Suppose we know that p ( .) belongs to a 
set P, where this set is defined by the knowledge of some 
averages, 

P = { d41Ep[dx)l = g}. 
The given averages are the only information available on the 
underlying phenomena in the ME framework. The choice of 
probability function is then 

Maximum Entropy as a Special Case of the 
Minimum Description Length Criterion p(x) logp(x) dx . 

MEIR FEDER 
3 = argFEyH(p) = 

I 
We first note that in the ME framework we do not assume any 

Abtract--The Maximum Entropy (MET) and Maximum Lielihood model; the method will work even if the set P contains all 
(ML) criteria are the bases for two approaches to statistical inference possible probability functions. The constraints on the probability 
problems. A new criterion, called the Minimum Description Length (MDL), functions are derived from the data. On the other hand, the basic 
has been recently introduced. This criterion generalizes the ML method so limitation of the direct ME method is that one cannot incorpo- 
it can be applied to more general situations, e.g., when the number of rate the information provided by a specific observation sequence. 
parameters is unknown. It is shown that ME is also a special case of the Usually in this case one calculates some sample averages and uses 
MDL criterion; maximizing the entropy subject to some constraints on the them as constraints on the entropy maximization. However, this 
underlying probability function is identical to minimizing the code length approach does not use all available information about the phe- 
required to represent all possible i.i.d. realizations of the random variable nomena, and we introduce errors in the inference process since 
such that the sample frequencies (or histogram) satisfy those given con- the sample averages differ from the statistical averages. 
straints. 

B. Minimum Description Length Method 
I. INIRODUCTI~N A new method for statistical inference, based upon the MDL 

A. Maximum Entropy and Maximum Likelihood 
criterion, has recently been introduced by Rissanen [l], [2], [3]. 
This method overcomes some of the limitations of the ML 

The Maximum Entropy (ME) and the Maximum Likelihood method. Stated simply, it is as follows. 
(ML) methods flow from two different philosophies for statistical Suppose we have a specific observation sequence x. The prob- 
inference. In both methods the “output,” or the result of the ability function that we will choose is such that the code length 
inference process, is a choice of probability function which we required to represent those observations (which is a function of 
believe (by those philosophies) represents best the behavior of the the probability that we assign to the observations) is minimized. 
phenomena that we observe. To be more specific, let us describe This description (or code) length is influenced by two factors. 
the common situations leading to the choice of these methods. If we know the probability distribution, the “ideal” code length 

Maximum Likelihood: Suppose we have an observation x. We [4] that is required to represent the specific observation is the 
assume that the probability function that describes x is char- (self-) information of that observation, i.e., -log p(x). (In case 

p(x) is density, a term proportional to the precision ought to be 
Manuscript received August 8, 1985; revised February 24, 1986. This work added. We drop this term, however.) The second factor is the 
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Rissanen, inspired by the work of Akaike [5] and the algorith- 
mic notion of complexity, has suggested the MDL criterion be 
used to generalize the ML procedure to the case where the 
number of the parameters is also unknown. The intuitive notion 
is that since we can always increase the likelihood by allowing 
more parameters, there should be some term in the criterion that 
will penalize using too many parameters (overfitting). The 
minimum code-length criterion is adequate since now the descrip- 
tion length needed to define the parameters depends on their 
number and on the precision with which they are written. This 
code length was calculated in [2]. If we take only the dominant 
term, the MDL criterion suggested by Rissanen [3] for this case 
yields the parameter estimates 

AJ= arg% 
, [ 

-logp(x; e> + $logN 
I 

= wy,(x), 

where n is the number of the parameters in 8 and N is the length 
of the observation sequence. 1,,(x) is defined to be the (self-) 
information of the sequence x with respect to the given family 
[3]; see also [6] and [7] for related work in the context of universal 
coding. 

The main result in this paper is that the ME criterion is also a 
special case of this new MDL criterion. To show this result we 
somewhat extend the MDL method. Suppose the given informa- 
tion about the underlying phenomena is not a single observation 
sequence but rather a set of such sequences. This type of infor- 
mation is available either by having several independent observa- 
tion sequences or by having constraints that define a possible set 
of observation sequences. The MDL criterion for this type of 
information will suggest that we choose the probability distribu- 
tion that minimizes the total code length when all the members of 
this set of possible observation sequences are encoded using the 
proposed distribution. 

Now we can adapt the MDL criterion to the ME framework in 
which the given information about the underlying phenomena is 
in terms of constraints on the probability distribution. We claim 
that if we try to represent all possible observation sequences 
whose “histogram” or sample frequencies satisfy those con- 
straints, the minimum code length is achieved if the probability 
function is the ME distribution. 

II. MAXIMUM ENTROPY AS MINIMUM DESCRIPTION 
LENGTH 

In the ME framework the given information is the knowledge 
of some averages. Recall that the strong law of large numbers 
implies 

E[g(x)] =g* lim 1 ig(xi) =ga.s., 
n-+03 n i-1 

where xi are i.i.d. observations, distributed as x. So this ME-type 
information is equivalent to the information that the observations 
lie in the set of all infinitely long sequences whose sample 
averages are the given averages. 

Having the above argument in mind, we will show that maxi- 
miring the entropy subject to some constraints on the probability 
distribution is asymptotically equivalent to minimizing the code 
length needed to represent all the sequences whose histogram or 
sample frequencies satisfy the given constraints. 

To clarify our argument let us start with a simple example. 
Suppose we want to estimate the probability of 1 (success) in a 
simple binary (Bernoulli) trial. We denote p(1) = 0, p(0) = 1 - 
0. Suppose we do not have any observations and thus we only 
know that for any N trials we will perform we may observe any 
of the 2N possible sequences of l’s and 0’s. 

Equipped with the MDL philosophy, we will choose 0 so that 
all 2 sequences can be represented by the shortest possible code. 
Now for each sequence x we need about 

-iOgp(x; 8) = -log [ ek(i - e)N-k] (1) 

bits, where k is the number of l’s in x. We will denote by I the 
set of all such sequences and by L(s) the total code length 
required to represent the whole set. Now for any k we have 
sequences with k l’s, so that 

~(9) = i (T)[ -iogek(l - ejN-k] 
k=O 

= -[~o(f)+%‘~- [~o(~)(N-k)]log(l-B). 
(2) 

Noting that 

we see that 
L(S) = 40ge - d0g(i - e) (3) 

is minimized (unsurprisingly) by 0 = l/2. Observe that this 
probability function is the same as that given by the ME princi- 
ple (with no constraints) on the binary random variable. 

Further note that we have ignored the term l/2 log N required 
to represent the code length for describing the single parameter 0 
because it has no effect on the mimmizing value of 0. 

We are ready now to prove the general claim, stated as the 
following theorem. 

Theorem: Let X be a random variable that takes its values 
over the finite set (1;. =, m}. Let x = xlxz . . . xN be a sample 
of N independent trials of X. Let fi( x) = ki( x)/N be the 
frequencies of each outcome in this sample. (The vector f(x) = 
tfi(xh. . . , f,(x)]’ will be sometimes called the histogram of the 
sample). Let g be any fixed set of histograms. Let sN be the 
set 

sN= {x=x, ... XNlf(X) EF}. 

The code length that results when the whole set FN is encoded 
depends on p = [pl;.., pm], the probability assignment of X 
with which the code design is done, and it will be denoted by 
L(fe^,, p). Then the probability that minimizes this length is 
given by 

-i- N! 
f 

ijN = 
,&k,! .+. k,!’ 

N! ’ (4 
,k&! .a. k,! 

Furthermore, if the entropy function H has a unique maximum 
in 9, then 

In other words, the “best” (in the MDL sense) probability is the 
ME probability subject to the given constraints on the histogram. 

Proof The probability of a sample xi 1.1 xN depends on 
the relative frequencies (or the number of occurrences of each 
outcome) as 

P(x) = ,f!Pll. 

So the code length required to represent this sample to within the 
term m/2log N required to encode the probabilities pi is 

L(x) = -logp(x) = - 5 kilogpi. (6) 
i-l 
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Now there are N !/k, ! . . . k, ! possible sequences having the 
same frequencies or the same number of occurrences k = 
[k,,- * 13 k,,,]? Since the constraints are only on the frequencies 
(or on k) we can write the total code length 

L(fe^,,P) = 
N! m 

adti;b,e k  k, ! . . . k, ! i - iFl ki log pi 

=- 
gl ( &k,! .:.’ k  ! ki) log pi. (7) m 

We will denote 

,f$ = c N! 
,Egkkl! ... k,! 

ki. 

The total code length is thus 

i=l 

which is minimized (using Jensen’s inequality) by 

Pi 
BN,i = 7 

CP,’ 
I=1 

Substituting (8) in (9) and recalling that ki/E;“=, k, = f, yields 
(4). 

Again, we observe that if the set 9 includes all the possible 
distributions, we can conclude by symmetry that all pi are equal; 
thus $N,i = l/m; i.e., we get the uniform distribution, which is 
the ME distribution for this case of no constraints. 

In general, we will get the ME distribution only in the limit as 
N + cc as follows. It is easy to show (using Stirling’s formula for 
factorials) that 

N! 
S= 

k,! a.1 k,! 
= eNIH(fi,..,,/,)+o(logN/N)I (10) 

where H(f,; . . , f,) = -Czi fi log f, is the entropy associated 
with the frequencies f, = k/N. Substituting (10) in (4) and 
taking the limit as N + cc yields 

(11) 

Let us assume first that the function H(j) has in 9 a single 
global maximum, at j,,. Now as N + cc 

Nfimm e- NlWf-)-H(f)1 = 0 if f + f,, 
1 if j=j,,’ (12) 

So we can write (11) as 

C jeWf) C fee NlH(/,,)-H(f)1 

f’s 
(13) 

i.e., B is the ME distribution. Q.E.D. 
Note that in general if H( .) has several global maxima 

f 1,’ * . , f,, then the result in (11) will be 

We claim that the above theorem can be extended, following 
the same lines of proof, to the case where the random variable 
takes its values over a countably infinite set. 

III. CONCLUSION 

The desired outcome of this paper is to establish the MDL 
criterion as a general criterion for statistical inference. The rela- 
tion to ME together with the motivation introduced by Bissanen 
[3] makes this method powerful and adequate for many statistical 
inference problems. 

The advantage of using the MDL will be clear in situations 
where both the ML and the ME methods fail. Having the MDL 
criterion, we can, on the one hand, work with more general sets 
of probability distributions (not just distributions that are known 
up to a fixed number of parameters as in the ML method) and, 
on the other hand, take into consideration more general data (not 
just a specific sequence as in the ML method or some averages as 
in the ME method). 

An example that we have in mind is the following. Suppose we 
observe an output of a system that implies that the system state is 
in a set S? of states. We can construct a probability assignment 
for the state of the system by looking for a probability measure 
that will minimize the code length required to represent all the 
states in %. This implementation, which cannot be solved by the 
ML since we have no a priori parameterized probability distribu- 
tions in mind, and which cannot be solved by the ME method 
since we do not have direct constraints on the probability distri- 
bution, might be solved using the MDL criterion, and it is now 
under investigation. 
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Synchronization of Binary 
Source Codes 
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Abstract-The problem of achieving synchronization for variable-length 
source codes is addressed through the use of self-synchronizing binary 
prefix-condition codes. Although our codes are suboptimal in the sense of 
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